Abstract

In general, analysis of failure modes and their effects requires a group of experts to tackle substantial uncertainties associated with the risk evaluation process. To date, to overcome one or more of the uncertainty-related issues, an increasing number of failure mode and effects analysis (FMEA) models based on multi-criteria decision-making (MCDM) methods have been developed. However, most of the improvements have not cautiously considered the process of assigning importance weights to risk factors and FMEA team members during FMEA. This study aims to enhance the performance of the classic FMEA and to propose an integrated fuzzy MCDM approach for FMEA. First, a fuzzy best-worst method is used to obtain the weights of risk factors. Second, an integrated structure based on fuzzy proximity and fuzzy similarity entropy weights is developed to obtain the weights of FMEA team members with respect to different risk factors. Finally, a fuzzy VIKOR (VIsekriterijumska optimizacija i KOm-promisno Resenje) approach is employed to obtain the risk priorities of failure modes. The applicability and effectiveness of the proposed approach is validated through an illustrative example concerning risk analysis of a grinding wheel system. The results of sensitivity and comparative analyses show that the proposed approach is valid and can provide valuable and effective information in assisting risk management decision-making.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call