Abstract

The demand for milk and its products is growing worldwide. The need to find more efficient ways to produce milk while reducing pressure on the local and global environment has been identified. The Israeli dairy system operates in a challenging environment (limited land, water, and a harsh climate). This paper embraces a life cycle assessment (LCA) framework to analyze various local and global direct and indirect environmental interactions of milk production in Israel. The results show that the production of 1 kg of fat and protein-corrected milk (FPCM) in the systems that were analyzed requires on average 0.5 m2 of land, 52 L of water, and 3.3 MJ of energy. The emissions that were generated over the life cycle averaged 1.03 kg CO2-eq (GWP), 0.0095 kg SO2-eq (AP) and 0.003 kg PO4-eq (EP). The research findings point to several ‘pollution hotspots’ that are relevant also to dairy systems in other regions, including feed supply, GHG emissions that are related to enteric fermentation, manure management, and the use of water, and discuss some potential directions to advance more efficient, less polluting system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.