Abstract
We propose and demonstrate a novel approach for dual metal gate CMOS process integration through the use of a very thin aluminum nitride (AlN/sub x/) buffer layer between metal and gate oxide. This buffer layer prevents the gate oxide from being exposed to a metal etching process which potentially causes oxide thinning and damage. Subsequent annealing consumes the very thin AlN/sub x/ layer and converts it into a new metal alloy film by reacting with gate metals, resulting in no increase in EOT due to this buffer layer. The work function of the original gate metal is also modified as a result of its reaction with AlN/sub x/, making this approach extremely attractive for engineering the work function for dual metal gate CMOS applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.