Abstract
Complexity of one-hidden-layer networks is studied using tools from nonlinear approximation and integration theory. For functions with suitable integral representations in the form of networks with infinitely many hidden units, upper bounds are derived on the speed of decrease of approximation error as the number of network units increases. These bounds are obtained for various norms using the framework of Bochner integration. Results are applied to perceptron networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.