Abstract
We give an integral representation formula for logarithmic Riesz potentials. This plays an essential role in proving the sharpness of the embeddings of Bessel-potential spaces, which have logarithmic exponents both in the smoothness and in the underlying Lorentz—Zygmund spaces. These results are natural extensions of those obtained by Edmunds, Gurka, Opic and Trebels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society of Edinburgh: Section A Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.