Abstract

In this paper, we derive an integral formulation approach based on Green’s function for the numerical solution of tubular reactor models described by reaction-diffusion-convection (RDC) equations with Danckwerts-type boundary conditions. The integral formulation approach allows the direct incorporation of boundary conditions and leads to a stable and accurate numerical integration with smooth round-off error. Numerical simulations of two of tubular reactors models are presented in order to illustrate the numerical accuracy of the method. The results are compared with those resulting from using standard finite difference method. Our results show that the integral formulation approach improves the performance of classical FD schemes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call