Abstract

In this paper, we are concerned with the initial boundary value problem of arbitrarily high-dimensional Klein-Gordon equations, posed on a bounded domain Ω ⊂ ℝd for d ≥ 1 and equipped with the requirement of boundary conditions. We derive and analyze an integral formula which is proved to be adapted to different boundary conditions for general Klein-Gordon equations in arbitrarily high-dimensional spaces. The formula gives a closed-form solution to arbitrarily high-dimensional homogeneous linear Klein-Gordon equations, which is totally different from the well-known D’Alembert, Poisson, and Kirchhoff formulas. Some applications are included as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.