Abstract

An integral equation formulation of two- and three-dimensional infinite isotropic medium with nanoscale inhomogeneities is presented in this paper. The Gurtin---Murdoch interface constitutive relation is used to model the continuity conditions along the internal interfaces between the matrix and inhomogeneities. The Poisson's ratios of both the matrix and inhomogeneities are assumed to be the same. The proposed integral formulation only contains the unknown interface displacements and their derivatives. In order to solve the nanoscale inhomogeneities, the displacement integral equation is used when the source points are acting on the interfaces between the matrix and inhomogeneities. Thus, the resulting system of equations can be formulated so that the interface displacements can be obtained. Furthermore, the stresses at points being in the matrix and nanoscale inhomogeneities can be calculated using the stress integral equation formulation. Numerical results from the present method are in good agreement with those from the conventional sub-domain boundary element method and the analytical method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.