Abstract

In this paper, we introduce an integer-valued threshold autoregressive process, which is driven by independent negative-binomial distributed random variables and based on negative binomial thinning. Basic probabilistic and statistical properties of this model are discussed. Conditional least squares and conditional maximum likelihood estimators and corresponding iterative algorithms are investigated for both the cases that the threshold variable is known or not. Also, the asymptotic properties of the estimators are obtained. Finally, some numerical results of the estimates and a real data example are presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.