Abstract
A binary integer programming model is proposed for a complex timetabling problem in a university faculty which conducts various degree programs. The decision variables are defined with fewer dimensions to economize the model size of large scale problems and to improve modeling efficiency. Binary matrices are used to incorporate the relationships between the courses and students, and the courses and teachers. The model includes generally applicable constraints such as completeness, uniqueness, and consecutiveness; and case specific constraints. The model was coded and solved using Open Solver which is an open-source optimizer available as an Excel add-in. The results indicate that complicated timetabling problems with large numbers of courses and student groups can be formulated more efficiently with fewer numbers of variables and constraints using the proposed modeling framework. The model could effectively generate timetables with a significantly lower number of work hours per week compared to currently used timetables. The model results indicate that the particular timetabling problem is bounded by the student overlaps, and both human and physical resource constraints are insignificant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.