Abstract

AbstractWe present a new approach for exactly solving general chance constrained mathematical programs having discrete distributions. Such problems have been notoriously difficult to solve due to nonconvexity of the feasible region, and currently available methods are only able to find provably good solutions in certain very special cases. Our approach uses both decomposition, to enable processing subproblems corresponding to one possible outcome at a time, and integer programming techniques, to combine the results of these subproblems to yield strong valid inequalities. Computational results on a chance-constrained two-stage problem arising in call center staffing indicate the approach works significantly better than both an existing mixed-integer programming formulation and a simple decomposition approach that does not use strong valid inequalities. Thus, the strength of this approach results from the successful merger of stochastic programming decomposition techniques with integer programming techniques for finding strong valid inequalities.KeywordsStochastic programminginteger programmingchance constraintsprobabilistic constraintsdecomposition

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.