Abstract
The N-terminal sequence of rat brain hexokinase (ATP: d-hexose-6-phosphotransferase, EC 2.7.1.1) has been determined to be ▪ where X is a blocking group on the N-terminal methionine, probably an N-acetyl group. Modification of this hydrophobic N-terminal segment by endogenous proteases in crude brain extracts resulted in loss of the ability to bind to mitochondria, but had no effect on catalytic activity, resulting in the appearance of nonbindable enzyme reported by several previous investigators to be present in purified hexokinase preparations. Similar results can be obtained by deliberate limited digestion with chymotrypsin (cleavage points marked by arrows in sequence above). Both bindable and nonbindable enzyme, the latter generated either by endogenous proteases or with chymotrypsin, have an identical C-terminal dipeptide sequence, Ile-Ala. The great susceptibility of the N-terminus to proteolysis plus the marked effect that its proteolytic modification has on binding of hexokinase to anion exchange or hydrophobic (phenyl-Sepharose) matrices suggest that this N-terminal segment is prominently displayed at the enzyme surface. Epitopes recognized by two monoclonal antibodies which block binding of hexokinase to mitochondria (but have no effect on catalytic activity) have been mapped to a 10K fragment cleaved from the N-terminus by limited tryptic digestion. Thus the binding of hexokinase to mitochondria appears to occur via a “binding domain” constituting the N-terminal region of the molecule, with maintenance of an intact hydrophobic sequence at the extreme N-terminus being critical to this interaction. A resulting specific orientation of the molecule on the mitochondrial surface is considered to be a prerequisite for the observed coupling of hexokinase activity and mitochondrial oxidative phosphorylation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.