Abstract
BackgroundStimulation of phospholipase Cβ (PLCβ) by the activated α-subunit of Gq (Gαq) constitutes a major signaling pathway for cellular regulation, and structural studies have recently revealed the molecular interactions between PLCβ and Gαq. Yet, most of the PLCβ-interacting residues identified on Gαq are not unique to members of the Gαq family. Molecular modeling predicts that the core PLCβ-interacting residues located on the switch regions of Gαq are similarly positioned in Gαz which does not stimulate PLCβ. Using wild-type and constitutively active chimeras constructed between Gαz and Gα14, a member of the Gαq family, we examined if the PLCβ-interacting residues identified in Gαq are indeed essential.ResultsFour chimeras with the core PLCβ-interacting residues composed of Gαz sequences were capable of binding PLCβ2 and stimulating the formation of inositol trisphosphate. Surprisingly, all chimeras with a Gαz N-terminal half failed to functionally associate with PLCβ2, despite the fact that many of them contained the core PLCβ-interacting residues from Gα14. Further analyses revealed that the non-PLCβ2 interacting chimeras were capable of interacting with other effector molecules such as adenylyl cyclase and tetratricopeptide repeat 1, indicating that they could adopt a GTP-bound active conformation.ConclusionCollectively, our study suggests that the previously identified PLCβ-interacting residues are insufficient to ensure productive interaction of Gα14 with PLCβ, while an intact N-terminal half of Gα14 is apparently required for PLCβ interaction.Electronic supplementary materialThe online version of this article (doi:10.1186/s12900-015-0043-3) contains supplementary material, which is available to authorized users.
Highlights
Stimulation of phospholipase Cβ (PLCβ) by the activated α-subunit of Gq (Gαq) constitutes a major signaling pathway for cellular regulation, and structural studies have recently revealed the molecular interactions between PLCβ and Gαq
By generating a series of Gα subunit chimeras and testing their abilities to functionally associate with PLCβ2 in Human embryonic kidney 293 (HEK293) cells, we have demonstrated that an intact helical domain in the N-terminus of Gα14 is necessary for productive interaction with PLCβ
The PLCβ-interacting core regions of Gα14 are insufficient to stimulate PLCβ2 The PLCβ-interacting surfaces of Gαq have been generally mapped to the β2-β3-α2-β4-α3 regions [13, 17], and these residues are mostly conserved among Gα11, Gα14, and Gα16 (Fig. 1a)
Summary
Stimulation of phospholipase Cβ (PLCβ) by the activated α-subunit of Gq (Gαq) constitutes a major signaling pathway for cellular regulation, and structural studies have recently revealed the molecular interactions between PLCβ and Gαq. Most of the PLCβ-interacting residues identified on Gαq are not unique to members of the Gαq family. Using wild-type and constitutively active chimeras constructed between Gαz and Gα14, a member of the Gαq family, we examined if the PLCβ-interacting residues identified in Gαq are essential. The diversity in G protein subunits allows disparate signaling pathways to be regulated by different receptors. Robust stimulation of phospholipase Cβ (PLCβ) is primarily mediated by GPCRs that utilize Gαq proteins for signaling [3], thereby leading to diverse cellular responses that range (PIP2) into diacylglycerol and inositol 1,4,5-trisphosphate (IP3), and reciprocally acts as a GTPase activating protein (GAP) of Gαq [7, 8]. Somatic mutations causing constitutive activation of Gαq drive ~50 % of all uveal melanomas [12]
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.