Abstract

A robust immune response against invading pathogens greatly depends on the balance of metabolism, which could be vigorously modulated by insulin/IGF signaling (IIS) pathway in vertebrates. However, knowledge on the IIS pathway, especially the function of insulin-like peptides (ILPs) in invertebrates remained largely unknown. In the present study, a novel ILP was identified from Eriocheir sinensisis (designated EsILP). The coding sequence of EsILP was of 216 bp, which encoded a polypeptide of 71 amino acids containing an IlGF-like domain with four conserved cysteine residues. The mRNA transcripts of EsILP were found to be expressed dominantly in eyestalks and hepatopancreas, and EsILP protein was found to be distributed in the anterior median area of thoracic ganglion mass and the edges of hepatic tubules correspondingly. After Aeromonas hydrophila stimulation, EsILP transcripts were significantly increased at 3, 12 and 24 h post-stimulation in eyestalks and 6 and 48 h in hemocytes, respectively. In contrast, the expression level of EsILP decreased significantly in hepatopancreas from 6 h to 12 h after the stimulation. The glucose level in the hemolymph of crabs was significantly decreased from 6 to 12 h after the injection of recombinant EsILP. These results collectively demonstrated that the ancient ILP protein in E. sinensisis could negatively regulate glucose metabolism and participate in the immune response of the crabs against pathogen infection, which provided clues for the further investigation about the evolution and function of the IIS pathway in invertebrates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.