Abstract

We describe a low-temperature millimeter-wave (44 GHz) surface impedance measurement instrument based on the cavity perturbation method. In this instrument, all millimeter-wave paths at low temperatures (including the cavity resonator), are located inside a high vacuum tube, which can be inserted into a 7 T superconducting magnet. This design, which is free of exchange gas, enables measurements over a wide temperature range as well as providing stable and reproducible operation. By pumping a He3 pot attached to a cavity, a sample can be cooled well below 1 K. We present experimental results which demonstrate the performance of the instrument.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.