Abstract

An instrument for the measurement of the radiative component of total heat transfer in a high-temperature gas fluidized bed is described. The main objective of this paper is to emphasize the design, instrumentation, and calibration of this device. The results are presented and discussed elsewhere (Alavizadeh, 1985; Alavizadeh et al., 1985). The design makes use of a silicon window to transmit the radiative heat flux to a thermopile-type heat flow detector located at the base of a cavity. The window material thermal conductivity is sufficiently large to prevent conduction errors due to the convective component of total heat transfer. Also, its transmission and mechanical hardness are well suited for the fluid bed environment. The device has been calibrated using a blackbody source both before and after exposure to a fluidized bed, indicating the effect of the abrasive bed environment on performance. The instrument has been used to measure local radiative heat transfer around a horizontal tube. Typical results for a particle size of 2.14 mm and a bed temperature of 1050 K are presented and discussed to illustrate instrument performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.