Abstract

This paper focused on the performance monitoring and modeling of a 6.0 kW, 2000 L hybrid direct expansion solar assisted heat pump (DX-SAHP) water heater used for the production of hot water in a university students’ accommodation with 123 females. The data of total electrical energy consumed, volume of hot water consumed, ambient temperature, relative humidity, and solar irradiance were obtained from the data acquisition systems and analyzed in conjunction with the energy factor (EF) of the system. A multiple linear regression model was developed to predict the EF. The EF of the hybrid DX-SAHP water heater was determined from the summation of the coefficient of performance (COP) of the heat pump unit and the solar fraction (SF) of the solar collectors. The operations of the hybrid energy system were analyzed based on three phases (first phase from 00:00–08:00, second phase from 08:30–18:30, and third phase from 19:00–23:30) over 24 h for the entire monitoring period. The average EF of the hybrid energy system per day during the second phase of operation was 4.38, while the SF and COP were 0.697 and 3.683, respectively. The developed multiple linear regression model for the hybrid DX-SAHP water heater accurately predicted the determined EF.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call