Abstract

An in-situ transmission electron microscopy study was conducted at room temperature in order to understand an underlying mechanism on room temperature ductility of TiAl alloys. From in-situ straining transmission electron microscopy experiments, it was revealed that the crack path is different between the TiAl alloys with/without room temperature ductility. The crack in TiAl alloys having room temperature ductility interacted with lamellae by forming bridging ligaments between the two α2 lamellae and the γ lamellae. In contrast, the cracks in TiAl alloys without room temperature ductility propagated along grain (colony) boundaries showing brittle intergranular fracture. Finally, we proposed the important microstructural factors to have room temperature ductility of TiAl alloys.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.