Abstract

Deformation in nanocrystalline (NC) materials is strongly influenced by the presence of a large fraction of grain boundaries. We present a comparative study on the role of intragranular root-mean-square strain and crystallographic texture on recovery processes. The detailed microstructure analysis with conventional X ray diffraction and in-situ synchrotron measurements during deformation are used to understand the various attributes of recovery mechanisms associated with annealing and deformation of electrodeposited NC nickel (grain size = 30nm). Our results emphasize the dominance of local atomic rearrangements during thermal recovery processes, while deformation induced recovery processes are supported primarily by large-scale dislocation activity. The in-situ deformation of NC samples with two different textures illustrates further the influence of gran boundary character on recovery processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.