Abstract

BackgroundThe main protease is an important structural protein of SARS-CoV-2, essential for its survivability inside a human host. Considering current vaccines' limitations and the absence of approved therapeutic targets, Mpro may be regarded as the potential candidate drug target. Novel fungal phytocompound Astrakurkurone may be studied as the potential Mpro inhibitor, considering its medicinal properties reported elsewhere. MethodsIn silico molecular docking was performed with Astrakurkurone and its twenty pharmacophore-based analogues against the native Mpro protein. A hypothetical Mpro was also constructed with seven mutations and targeted by Astrakurkurone and its analogues. Furthermore, multiple parameters such as statistical analysis (Principal Component Analysis), pharmacophore alignment, and drug likeness evaluation were performed to understand the mechanism of protein-ligand molecular interaction. Finally, molecular dynamic simulation was done for the top-ranking ligands to validate the result. ResultWe identified twenty Astrakurkurone analogues through pharmacophore screening methodology. Among these twenty compounds, two analogues namely, ZINC89341287 and ZINC12128321 showed the highest inhibitory potentials against native and our hypothetical mutant Mpro, respectively (−7.7 and −7.3 kcal mol−1) when compared with the control drug Telaprevir (−5.9 and −6.0 kcal mol−1). Finally, we observed that functional groups of ligands namely two aromatic and one acceptor groups were responsible for the residual interaction with the target proteins. The molecular dynamic simulation further revealed that these compounds could make a stable complex with their respective protein targets in the near-native physiological condition. ConclusionTo conclude, Astrakurkurone analogues ZINC89341287 and ZINC12128321 can be potential therapeutic agents against the highly infectious SARS-CoV-2 virus.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.