Abstract

AbstractCapacitive deionization (CDI) is an emerging electrochemical‐based adsorption system that has a high capability for the water reclamation with future potential towards an energy‐efficient and cost‐effective technique for industrial implementations. However, the higher cost of electrodes and poor performance limit its scale‐up, and there is a need to focus on a cost‐effective electrode towards economic impacts. Among the various waste resources, plastic sources would be the better precursor for carbonization as the plastic‐derived carbon possess enhanced surface properties and high electrochemical stability. Further, the carbonization of plastic products towards electrode minimizes greenhouse gas emissions, maintains environmental sustainability and achieves a dual benefit of circular economy with water reclamation. This paper highlights the overview of CDI, the significance of electrodes in CDI for electrosorption studies, various synthetic routes of plastic‐derived carbon, and its properties that help the researchers to focus on zero waste discharge‐based CDI process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call