Abstract

Silks are naturally occurring polymers that have been used clinically as sutures for hundreds of years. It's so for obtained from insects or worms, silk consists of a filament core protein, termed fibroin, and a glue-like coating made up of sericin proteins. An important component of silk has an extended history of being discarded as a waste in the course of silk processing. The cost of sericin for tissue engineering is underestimated and its capability in using as regenerative remedy has simply began to be explored. Its variable amino acid composition and various functional groups confer upon it attractive bioactive proteins, which are particularly interesting for biomedical programs. Because of its antioxidant properties, moisturizing ability, and mitogenic effect on mammalian cells, sericin is beneficial in cell regeneration and tissue engineering. Research shows that keratinocytes and fibroblasts have brought about the improvement of sericin-primarily based biomaterials for skin tissue repair, in particular as wound dressings. Moreover, sericin may be used for bone tissue engineering due to its ability to set off nucleation of bone-like hydroxyapatite. Stable silk sericin biomaterials, as films, sponges, and hydrogels, are obtained by means of cross-linking, ethanol precipitation, or mixing with different polymers. Now a day, sericin may also be used for delivery of drugs due to its chemical reactivity and pH-responsiveness which facilitate the fabrication of nano and microparticles, hydrogels, and conjugated molecules, enhancing the bioactivity of drugs. In this review, we outlined the current headways from extraction of sericin till its physical properties and biomedical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call