Abstract

Unveiling the events leading to the formation of prion particles is a nowadays challenge in the field of neurochemistry. Pathogenic mutants of prion protein (PrP) are characterized by both an intrinsic tendency to aggregation and scrapie conversion propensity. However, the question about a possible correlation between these two events lasts still unanswered. Here, a multilayered computational workflow was employed to investigate structure, stability, and molecular interaction properties of a dimer of PrPC -E200K, a well-known mutant of the PrP that represents a reduced model of early aggregates of this protein. Based on the combination of molecular dynamics and quantum mechanical approaches, this study provided for an in depth insight of PrPC -E200K dimer in terms of residue-residue interactions. Assembly hypotheses for the early aggregation of PrPC -E200K are paved and compared with PrPSc models reported in the literature to find a structural link between early and late (scrapie) aggregates of this protein.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.