Abstract

This research was targeted to investigate the effect of oxygen plasma treated graphene nanosheets (tGNSs) on the thermal stability of benzoxazine resin and to have a further and deeper mechanistic understanding of thermal decomposition kinetics of such nanocomposites in 0.5, 1 and 3 wt% of tGNS. The samples were prepared as reported in our previous study. The quality of dispersion of tGNSs within benzoxazine was investigated by X-Ray diffraction (XRD) and scanning electron microscopy (SEM) technique. Also, to ensure the complete curing of samples the differential scanning calorimetry (DSC) analysis was performed. Using thermogravimetric analysis (TGA), it was found that the addition of tGNS improved the char yield and thermal stability parameter of benzoxazine nanocomposites and this improvement was more prominent at 1% and higher amount of nanoparticles. Moreover, the first stage of thermal degradation kinetic of benzoxazine was disappeared above 1 wt% of tGNS. The samples were kinetically analyzed through Kissinger, Flynn-Wall-Ozawa and Friedman and Coats-Redfern method. It was revealed that the overall activation energy was enhanced from 168 to 224 kJ mol−1 and 275 to 420 kJ mol−1 for the second and third stage of degradation using 1 and 3 wt% of tGNS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call