Abstract
Novel coronavirus, severe acute respiratory syndrome coronavirus (SARS-CoV2) outbreak, which is a causal agent for coronavirus disease-19 (COVID-19), has gotten a pandemic in a very short timeframe and represents a global health threat. Since this virus crossed species boundaries, it has put the whole humanity at risk for the infection. We may expect to see the emergence of many other novel coronaviruses like this in future. It is of vital importance that effective standardized care protocols for serious cases are globally recommended to tackle the COVID-19 pandemic. As of now, there are no clinically approved vaccines for COVID-19, but the Phase1 vaccine development approach is on the way. In future, we may expect a dozen vaccines but to test the vaccines and to understand their role, animal models which reflect the clinical symptoms, replication of the virus and disease pathology as in the humans are in great demand. The vaccine development for SARS-CoV2 would depend on the immunological data collected from the severe acute respiratory syndrome coronavirus (SARS-CoV) that emerged late in 2003. Because the SARS-CoV and newly emerged SARS-CoV2 share ninety percent of sequence homology, previously used transgenic animal models to study the spread of the virus and the therapeutic response could be used for the development of systematic therapeutic drugs for SARS-CoV2. Here, in this review, we have summarized some of the animal models which were considered from the previous studies on SARS-CoV and the comparison between these animal models could be a good consideration for further developments in the treatment of COVID-19.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Health & Allied Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.