Abstract
Considering the drawbacks of the original Palmer drought severity index (PDSI) in terms of its simplified hydrologic algorithm and spatio-temporal inconsistency, we compare six variants of PDSI derived from different combinations of two hydrologic algorithms and three standard processes so as to provide deep insights into the individual impacts of hydrological processing and standardization on final PDSI values as well as their combined effects. Investigations are conducted in whole Yellow River basin. On basis of 52 years’ (1961–2012) hydro-meteorological data, comprehensive analysis on multiple drought characteristics are carried out for each PDSI variant, combined with comparison of three crucial intermediate variables of PDSI. Results show that variable infiltration capacity (VIC) model based modification in the hydrologic accounting section significantly improve drought trends with more reasonable spatial distributions presented. For the statistical characteristics of drought areas and frequency, comparable performance is found between VIC-based modification and self-calibrating standard procedure-based modification, though they are derived from different mechanisms. However, in case of the coupling of these two modifications, indices derived from combined modifications perform poorly than single modification-based indices with unexpected high frequency of extreme events detected in certain regions. This reflects the complicated mechanism of PDSI and it is essential to propose an appropriate standardization to match the hydrological algorithm and further improve the performance of relevant drought index. With the crucial findings mentioned above, this study is promising to provide some theoretical supports and serve as a competent reference for future PDSI based researches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Stochastic Environmental Research and Risk Assessment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.