Abstract

Granular particle damping technique is a means for achieving high structural damping by the use of metal particles filled into an enclosure which is attached to the structure in a region of high vibration levels. The particle dampers are now preferred over traditional dampers due to the stability, robustness, cost effectiveness and the lower noise level than the impact damper. Such a promising technique has been used successfully in many fields over the past 20 years. In this paper, a state-of-art review on the development of modeling for particle damping is presented. The fundamentals and individual features of three main mathematical models of the granular particle damping are briefly summarized, i.e. the lumped mass model, the Discrete Element Method (DEM) and the approach based on the multiphase flow (MPF) theory of gas-particle. It is worth noting that an improved analytical model of the particle damping based on MPF theory is also introduced. The co-simulation of the COMSOL Multiphysics live link for MATLAB is conducted using this improved model. It can be shown that this model makes the complicated modeling problem more simply and offers the possibility to analyze the more complex particle-damping vibrating system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call