Abstract

The grain-refinement mechanisms involved during the deposition of diamond films by direct-current plasma assisted chemical vapor deposition (DC-PACVD) were investigated as a function of the inter-electrode electric field (IEEF). As IEEF was increased from 260 to 940 V cm−1, the local electron temperatures near the growth front increased strongly; as a result, a strong grain refinement occurred ultimately yielding ultrananocrystalline diamond films (UNCD). Such observations were attributed to novel features of the DC-PACVD, including the electron-stimulated desorption (ESD) of the hydrogen-terminated moieties located at the surface, and the consequently enhanced generation of bi-radical sites at the growing diamond surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.