Abstract
The surface and structural characterization techniques of three atom-thick bi-dimensional 2D-WS2 colloidal nanocrystals cross the limit of bulk investigation, offering the possibility of simultaneous phase identification, structural-to-morphological evaluation, and surface chemical description. In the present study, we report a rational understanding based on X-ray photoelectron spectroscopy (XPS) and structural inspection of two kinds of dimensionally controllable 2D-WS2 colloidal nanoflakes (NFLs) generated with a surfactant assisted non-hydrolytic route. The qualitative and quantitative determination of 1T’ and 2H phases based on W 4f XPS signal components, together with the presence of two kinds of sulfur ions, S22− and S2−, based on S 2p signal and related to the formation of WS2 and WOxSy in a mixed oxygen-sulfur environment, are carefully reported and discussed for both nanocrystals breeds. The XPS results are used as an input for detailed X-ray Diffraction (XRD) analysis allowing for a clear discrimination of NFLs crystal habit, and an estimation of the exact number of atomic monolayers composing the 2D-WS2 nanocrystalline samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Nanomaterials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.