Abstract

Electrocoagulation (EC) is a flourishing technique in the field of water treatment implementations. Numerous investigations have been performed to assess the performance of EC to eliminate different pollutants; however, the more basic electrochemical features of the technique are usually ignored. Scientists such as McBeath et al. [1] provided an understanding of the essential link of water flow, electrochemical metal dissolution, and current density distribution (CDD) via computational fluid dynamic (CFD) models, mathematical models, and in situ CDD determination tests. They established, in theory, that current distributed over the electrode was inversely proportional to the water flow rate. By means of the CFD models and current distribution determining technique, they noted that current density was distributed unequally and pursued the tendency anticipated via theory. Eliminating natural organic matter was decreased as much as 79% when the inter-electrode distance was diminished from 10 to 1 mm. As a perspective, more efforts are required to better understand the CDD at the anodes surface and electric charges transfer from electrodes to the bulk of the solution. Mechanisms related to interactions of anodic metallic cations and various pollutants should be more investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.