Abstract

BackgroundMicrobial enzymes produced in the gastrointestinal tract are primarily responsible for the release and biochemical transformation of absorbable bioactive monophenols. In the present work we described the crystal structure of LJ0536, a serine cinnamoyl esterase produced by the probiotic bacterium Lactobacillus johnsonii N6.2.Methodology/Principal FindingsWe crystallized LJ0536 in the apo form and in three substrate-bound complexes. The structure showed a canonical α/β fold characteristic of esterases, and the enzyme is dimeric. Two classical serine esterase motifs (GlyXSerXGly) can be recognized from the amino acid sequence, and the structure revealed that the catalytic triad of the enzyme is formed by Ser106, His225, and Asp197, while the other motif is non-functional. In all substrate-bound complexes, the aromatic acyl group of the ester compound was bound in the deepest part of the catalytic pocket. The binding pocket also contained an unoccupied area that could accommodate larger ligands. The structure revealed a prominent inserted α/β subdomain of 54 amino acids, from which multiple contacts to the aromatic acyl groups of the substrates are made. Inserts of this size are seen in other esterases, but the secondary structure topology of this subdomain of LJ0536 is unique to this enzyme and its closest homolog (Est1E) in the Protein Databank.ConclusionsThe binding mechanism characterized (involving the inserted α/β subdomain) clearly differentiates LJ0536 from enzymes with similar activity of a fungal origin. The structural features herein described together with the activity profile of LJ0536 suggest that this enzyme should be clustered in a new group of bacterial cinnamoyl esterases.

Highlights

  • Hydroxycinammates are natural phenolic compounds with a widespread distribution throughout the plant kingdom

  • The structural features described together with the activity profile of LJ0536 suggest that this enzyme should be clustered in a new group of bacterial cinnamoyl esterases

  • We previously showed that LJ0536, a cinnamoyl esterase purified from L. johnsonii N6.2, is active towards a variety of substrates including short acyl chain aliphatic esters and phenolic esters [14]

Read more

Summary

Introduction

Hydroxycinammates are natural phenolic compounds with a widespread distribution throughout the plant kingdom. These phytophenols are naturally present in the form of monophenols or polyphenols and participate in the formation of macromolecular structures in plant cells. Gastrointestinal absorbable monophenols are interesting to health researchers due to their innate ability to work as free radical scavengers, anti-inflammatory supplements, and immunostimulants [1,2,3]. Monophenols are frequently ester-conjugated to aromatic organic acids to form polyphenols such as oleuropein, chlorogenic acid, or rosmarinic acids, which are present in the diet [7,8]. Microbial enzymes produced in the gastrointestinal tract are primarily responsible for the release and biochemical transformation of absorbable bioactive monophenols. In the present work we described the crystal structure of LJ0536, a serine cinnamoyl esterase produced by the probiotic bacterium Lactobacillus johnsonii N6.2

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.