Abstract

Wasps and bees perform learning flights when leaving their nest or food locations for the first time during which they acquire visual information that enables them to return successfully. Here we present and test a set of simple control rules underlying the execution of learning flights that closely mimic those performed by ground-nesting wasps. In the simplest model, we assume that the angle between flight direction and the nest direction as seen from the position of the insect is constant and only flips sign when pivoting direction around the nest is changed, resulting in a concatenation of piecewise defined logarithmic spirals. We then added characteristic properties of real learning flights, such as head saccades and the condition that the nest entrance within the visual field is kept nearly constant to describe the development of a learning flight in a head-centered frame of reference, assuming that the retinal position of the nest is known. We finally implemented a closed-loop simulation of learning flights based on a small set of visual control rules. The visual input for this model are rendered views generated from 3D reconstructions of natural wasp nesting sites, and the retinal nest position is controlled by means of simple template-based tracking. We show that naturalistic paths can be generated without knowledge of the absolute distance to the nest or of the flight speed. We demonstrate in addition that nest-tagged views recorded during such simulated learning flights are sufficient for a homing agent to pinpoint the goal, by identifying nest direction when encountering familiar views. We discuss how the information acquired during learning flights close to the nest can be integrated with long-range homing models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.