Abstract
BackgroundThis study aimed to identify the most impactful set of intrinsic and extrinsic fall risk factors and develop a data-driven inpatient fall risk assessment tool (FRAT). MethodsThe dataset used for the study comprised in-hospital fall records from 2012 to 2017. Four machine learning (ML) algorithms, Support Vector Machine (SVM), Random Forest (RF), Gradient Boosting (Gboost), and Deep Neural Network (DNN) were utilized to predict the inpatient fall risk level. To enhance the performance of the prediction models, two approaches were implemented, including (1) feature selection to identify the optimal feature set and (2) the development of three distinct shift-wise models. Furthermore, the optimal feature sets in the shift-wise models were extracted. ResultsAccording to the results, DNN outperformed other methods by reaching an accuracy, sensitivity, specificity, and AUC of 0.71, 0.8, 0.6, and 0.7, respectively, considering the full set of features. The performance of the models was further improved (by 3-5 %) by conducting a feature selection process for all models. Specifically, the DNN model achieved an accuracy of 0.74 while considering the optimal set of predictors. Moreover, the shift-wise RF models demonstrated higher accuracies (by 4-10 %) compared to the same model using a full feature set. ConclusionsThis study's outcome confirms ML models' compelling capability in developing an inpatient FRAT while considering intrinsic and extrinsic factors. The insight from such models could form a foundation to (1) monitor the inpatients’ fall risk, (2) identify the major factors involved in inpatient falls, and (3) create subject-specific self-care plans.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.