Abstract

Alcoholic fermentation of grape must is a complex process, involving several yeast genera and species. The early stages in fermentation are dominated by non-Saccharomyces yeasts that are gradually replaced by the Saccharomyces cerevisiae species, which takes over the fermentation. Quantitative studies have reported the influence of non-Saccharomyces yeast species on wine quality and evaluated their biotechnological interest. The industrial yeast market, which, until recently, exclusively focused on S. cerevisiae, now offers S. cerevisiae/non-Saccharomyces (including Torulaspora delbrueckii) multi-starters. The development of these new mixed industrial starters requires a better understanding of the interaction mechanisms between yeast populations in order to optimize the aromatic impact of the non-Saccharomyces yeast while ensuring complete alcoholic fermentation thanks to S. cerevisiae. For this purpose, a new double-compartment fermentor was designed with the following characteristics: (1) physical separation of two yeast populations, (2) homogeneity of the culture medium in both compartments, (3) fermentation kinetics monitored by weight loss due to CO2 release, and (4) independent monitoring of growth kinetics in the two compartments. This tool was used to compare mixed inoculations of S. cerevisiae/T. delbrueckii with and without physical separation. Our results revealed that physical contact/proximity between S. cerevisiae and T. delbrueckii induced rapid death of T. delbrueckii, a phenomenon previously described and attributed to a cell-cell contact mechanism. In contrast, when physically separated from S. cerevisiae, T. delbrueckii maintained its viability and its metabolic activity had a marked impact on S. cerevisiae growth and viability. The double fermentor is thus a powerful tool for studying yeast interactions. Our findings shed new light on interaction mechanisms described in microorganism populations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.