Abstract

Maize and wheat are two of the most widespread crops worldwide because of their high yield and importance for food, chemical purposes and livestock feed. Some of the residues of these crops (i.e., maize cob and wheat chaff) remain in the field after grain harvesting. In Europe, just maize cob and grain chaff could provide an annual potential biomass of 9.6 Mt and 54.8 Mt, respectively. Collecting such a biomass could be of interest for bioenergy production and could increase farmers’ income. Progress in harvest technology plays a key role in turning untapped by-products into valuable feedstocks. This article presents a study of the performance and the quality of the work of Harcob, an innovative system developed for maize cob collection. Furthermore, the feasibility of using the Harcob system to also harvest wheat chaff during wheat harvesting was also verified. The results showed that it was possible to harvest 1.72 t ha−1 and 0.67 t ha−1 of cob and chaff, respectively, without affecting the harvesting performance of the combine. The profit achievable from harvesting the corn cob was around 4%, while no significant economic benefits were observed during the harvesting of wheat chaff with the Harcob system. The use of cereal by-products for energy purposes may allow the reduction of CO2 from fossil fuel between 0.7 to 2.2 t CO2 ha−1. The Harcob system resulted suitable to harvest such different and high potential crop by-products and may represent a solution for farmers investing in the bioenergy production chain.

Highlights

  • Bioenergy plays a significant role in climate change mitigation [1] by replacing fossil fuels for energy production

  • The combine harvester machine equipped with the Harcob system, allowed the collection of

  • The present study demonstrated that using residues the reduction of CO2 from fossil fuel is ranging from 0.7 to 2.2 t CO2 ha−1

Read more

Summary

Introduction

Bioenergy plays a significant role in climate change mitigation [1] by replacing fossil fuels for energy production. The agricultural sector is one of the main suppliers of biomass through planting specific bioenergy crops or using cropland residues [2]. This component of crop is constituted by the non-edible plant parts that are not collected and usually left on the field [3]. Considering the European Renewable Energy Directive (RED II, directive 2018/2001/EU), the advantages of using agricultural residues for energy production are, on the one hand, the non-need for additional land and the non-competition with the food industry, and on the other hand to turn an untapped product with a disposal cost, into an economic advantage for farmers.

Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call