Abstract

In this study, we developed a novel surface coating technique to modify the surface chemistry of thin film composite (TFC) nanofiltration (NF) membranes, aiming to mitigate organic fouling while maintaining the membrane's permselectivity. We formed a spot-like polyester (PE) coating on top of a polyamide (PA) TFC membrane using mist-based interfacial polymerization. This process involved exposing the membrane surface to tiny droplets carrying different concentrations of sulfonated kraft lignin (SKL, 3, 5, and 7 wt %) and trimesoyl chloride (TMC, 0.2 wt %). The main advantages of this surface coating technique are minimal solvent consumption (less than 0.05 mL/cm2) and precise control over interfacial polymerization. Zeta potential measurements of the coated membranes exhibited enhancements in negative charge compared to the control membrane. This enhancement is attributed to the unreacted carboxyl functional groups of the SKL and TMC monomers, as well as the presence of sulfonate groups (SO3) in the structure of SKL. AFM results showed a notable decrease in membrane surface roughness after polyester coating due to the slower diffusion of SKL to the interface and a milder reaction with TMC. In terms of fouling resistance, the membrane coated with a polyester composed of 7 wt % SKL showed a 90% flux recovery ratio (FRR) during Bovine Serum Albumin (BSA) filtration, showing a 15% improvement compared to the control membrane (PA). PE-coated membranes provided stable separation performance over 40 h of filtration. The sodium chloride rejection and water flux displayed minimal variations, indicating the robustness of the coating layer. The final section of the presented study focuses on assessing the feasibility of scaling up and the cost-effectiveness of the proposed technique. The demonstrated ease of scalability and a notable reduction in chemical consumption establish this method as a viable, environmentally friendly, and sustainable solution for surface modification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.