Abstract

Allelochemicals have been shown to inhibit cyanobacterial blooms for several years. In view of the disadvantages of "direct-added" mode, natural and pollution-free tea polyphenolic allelochemicals with good inhibitory effect on cyanobacteria were selected to prepare sustained-release particles by microcapsule technology. Results showed that the encapsulation efficiency of tea polyphenols sustained-release particles (TPSPs) was 50.6% and the particle size ranged from 700 to 970nm, which reached the nanoscale under optimum preparation condition. Physical and chemical properties of TPSPs were characterized to prove that tea polyphenols were well encapsulated and the particles had good thermal stability. The optimal dosage of TPSPs was determined to be 0.3g/L, at which the inhibition rate on Microcystis aeruginosa in logarithmic growth period could be maintained above 95%. Simultaneous decrease in algal density and chlorophyll-a content indicated that the photosynthesis of algal cells was affected leading to cell death. Significant changes of antioxidant enzyme activities suggested that Microcystis aeruginosa's antioxidant systems had been disrupted. Furthermore, TPSPs increased the concentration of O2- which led to lipid peroxidation of cell membrane and a subsequent increase in malondialdehyde (MDA) content. Meanwhile, the protein content, nucleic acid content, and electrical conductivity in culture medium rose significantly indicating the cell membrane was irreversibly damaged. This work can provide a basis for the utilization of environmentally friendly algal suppressants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call