Abstract
Dietary starch is usually associated with elevated postprandial glycemic response. This is a potential risk factor of type 2 diabetes. Here, a 1,4-α-glucan branching enzyme (GBE) was employed to reassemble α-1,4 and α-1,6 glycosidic bonds in starch molecules. Structural characterization showed that GBE-catalyzed molecular reassembly created an innovative short-clustered maltodextrin (SCMD), which showed a dense internal framework along with shortened external chains. Such short-clustered molecules obstructed digestive enzymes attack and displayed dramatically reduced digestibility. Therefore, SCMD was served as a dietary starch substitute to improve postprandial glucose homeostasis. A 22.3% decrease in glycemic peak was therefore detected in ICR mice following SCMD intake (10.7 mmol/L), compared with that in the control (13.8 mmol/L). Moreover, an attenuated insulin response (40.5% lower than that in control) to SCMD intake was regarded suitable for diabetes management. These novel discoveries demonstrate that enzymatically rebuilding starch molecules may be a meaningful strategy for diabetes management.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.