Abstract

A chute was designed following the principles of the Theory of Sampling to minimize the variations in powder flow and provide all particles in the flowing blends with the same opportunity of being selected as a sample. The design also reduces the thickness of the chute to allow the analysis of a higher portion of the flowing blends by a near infrared spectrometer. The blends that flowed through the chute had Carr’s index values that fluctuated between 23 and 25 percent, indicating passable flowability. A powder fowling evaluation demonstrated that there was no powder accumulation at the inspection window of the chute. The mass flow rate profiles indicated that the system achieves mass steady-state in approximately 30 s and a throughput of 30 kg/h which makes it suitable for continuous manufacturing operations. An in-line NIR calibration model was developed to quantify caffeine concentrations between 1.51 and 4.52 % w/w. The spectra obtained from each experiment had minimal baseline variation. The developed NIR method was robust to throughput changes up to approximately ±7 %. The test blends in the caffeine concentration range between 2.02 % w/w and 4.02 % w/w met the dose uniformity requirements of the Ph.Eur. 9.0, chapter 2.9.47. Variographic analysis was done to estimate the analytical and sampling errors which yielded values below 0.01 (%w/w)2. The obtained results showed that this chute could also be used in a continuous manufacturing line or other applications with flowing powders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.