Abstract
Planetary rovers play a critical role in space exploration missions, where one of the most fundamental algorithms is pose determination. Due to environmental and computational constraints, real-time pose determinations of planetary rovers can only use low-cost techniques, such as visual odometry. In this paper, by employing the angle-based criterion, a novel pose determination algorithm is proposed for visual odometry, which is suitable for any type of central camera. First, the problem is formulated using the Huber kernel function with respect to the angular residuals. Then, an intermediate coordinate system is introduced between the initial estimation and final refinement. In order to avoid being trapped in periodic local minimums, a linear method is used to further align the reference points between the intermediate and camera coordinate systems. Finally, one step refinement is implemented to optimize pose determinations. The theoretical analysis, the synthetic simulations, and the real experiments show that our proposed algorithm can achieve the best accuracies within similar processing times, compared with the most state-of-the-art algorithms, thereby approving the effectiveness of the proposed algorithm used in planetary rover onboard visual odometry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.