Abstract

Burgers’ equation is a nonlinear partial differential equation that appears in various areas of physics and engineering. Finding accurate and efficient numerical methods to solve this equation is crucial for understanding complex fluid flow phenomena. In this study, we propose a spline-based numerical technique for the numerical solution of Burgers’ equation. The space derivative is discretized using cubic B-splines with new approximations for the second order. Typical finite differences are used to estimate the time derivative. Additionally, the scheme undergoes a stability study to ensure minimal error accumulation, and its convergence is investigated. The primary advantage of this scheme is that it generates an approximate solution as a smooth piecewise continuous function, enabling approximation at any point within the domain. The scheme is subjected to a numerical study, and the obtained results are compared to those previously reported in the literature to demonstrate the effectiveness of the proposed approach. Overall, this study aims to contribute to the development of efficient and accurate numerical methods for solving Burgers’ equation. The spline-based approach presented herein has the potential to advance our understanding of complex fluid flow phenomena and facilitate more reliable predictions in a range of practical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.