Abstract
The advent of new high spatial resolution optical satellite imagery has greatly increased our ability to monitor land cover changes from space. Satellite observations are carried out regularly and continuously, and provide a great deal of insight into the temporal changes of land cover use. High spatial resolution imagery better resolves the details of these changes and makes it possible to overcome the "mixed-pixel" problem that is inherent with more moderate resolution satellite sensors. At the same time, high-resolution imagery presents a new challenge over other satellite systems, in that a relatively large amount of data must be analyzed and corrected for registration and classification errors to identify the land cover changes. To obtain the accuracies that are required by many applications to large areas, very extensive manual work is commonly required to remove the classification errors that are introduced by most methods. To improve on this situation, we have developed a new method for land surface change detection that greatly reduces the human effort that is needed to remove the errors that occur with many classification methods that are applied to high-resolution imagery. This change detection algorithm is based on neural networks, and it is able to exploit in parallel both the multiband and the multitemporal data to discriminate between real changes and false alarms. In general, the classification errors are reduced by a factor of 2-3 using our new method over a simple postclassification comparison based on a neural-network classification of the same images.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Geoscience and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.