Abstract

Abstract Precise and consistent production forecasting is indeed an important step for the management and planning of petroleum reservoirs. A new neural approach to forecast cumulative oil production using higher-order neural network (HONN) has been applied in this study. HONN overcomes the limitation of the conventional neural networks by representing linear and nonlinear correlations of neural input variables. Thus, HONN possesses a great potential in forecasting petroleum reservoir productions without sufficient training data. Simulation studies were carried out on a sandstone reservoir located in Cambay basin in Gujarat, India, to prove the efficacy of HONNs in forecasting cumulative oil production of the field with insufficient field data available. A pre-processing procedure was employed in order to reduce measurement noise in the production data from the oil field by using a low pass filter and optimal input variable selection using cross-correlation function (CCF). The results of these simulation studies indicate that the HONN models have good forecasting capability with high accuracy to predict cumulative oil production.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.