Abstract

The efficiency of double-junction CIGS/Perovskite-based solar cells has significantly improved through recent research. This study presents a new plasmonic structure for these optical devices, utilizing cluster nanostructures to increase photon absorption between 650 and 1137 nm wavelength ranges. The proposed nanostructure includes two vertically coupled silver nanoparticles embedded at the center of the bottom active layer (CIGS) that absorb most of the incoming light to CIGS within the active layer. The electric field produced by the coupling of the nanoparticles has a superior performance. To analyze the effect of nanoparticle coupling on CIGS/Perovskite solar cell performance, evaluated the short-circuit current density and power conversion efficiency for single and cluster nanostructures with a single nanoparticle in the middle of CIGS. The structures with a single nanoparticle displayed Jsc = 16.89 mA cm−2 and PCE = 31.76%, while the cluster nanostructure represents Jsc = 19 mA cm−2 and PCE = 35.81%. Not only did the use of the cluster nanostructure significantly improve absorption and performance compared to the bare case, but it also exhibited a suitable improvement compared to the single nanoparticle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.