Abstract

An innovative matrix, produced by thermal treatment on direct compression (DC) tablets containing polycarbophil (POL) and ethylcellulose (EC), identified as matrix forming polymers, and able to control the release of diltiazem hydrochloride, was developed. At pH 7.2, 72 ± 1.2% (w/w) of drug loaded was released in 25 h, mostly at constant rate. This swellable and unerodible matrix controls drug release by an anomalous transport mechanism. The modifications induced by the thermal treatment are irreversible and can be used to control and characterize the matrix. A 3-component constrained mixture design allowed the investigation of the experimental domain in which the matrix forms and the computation of a mathematical model that can be used to optimize the formulation properties. The release rate can be modulated (0.032-0.064% drug released/min) through the choice of suitable treatment conditions and tablet composition. The maximum amount of diltiazem hydrochloride released by zero-order kinetics, at the lowest release rate, occurs for POL:EC ratio in the range of 1:1-2:3 with 20-30% of diluent. The tablets are able to load up to 50% (w/w) of diltiazem hydrochloride without losing their properties. A stability study performed on a selected formulation containing DTZ showed stability for at least 2.7 years at RT conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.