Abstract

Sintering is a process in sinter machine for agglomeration of iron ore and other raw material fines into a compact porous mass, i.e., sinter, used in Blast Furnaces as an iron bearing input charge material for hot metal production. ‘Permeability’ of sinter-bed on sinter machine i.e., the porosity in sinter-bed of charged materials, facilitates atmospheric air passes from the top to bottom across the depth of sinter-bed, when suction created from the bottom of the bed, for efficient heat carry over from top to bottom of the bed for complete burning of charged materials for effective sintering process controls the productivity of the sinter machine. The level of ‘permeability’ in sinter-bed is depending upon the effectiveness of ‘charging chute’ in size-wise ‘segregation’ of charge materials across the depth in sinter-bed, achieved due to differences in the sliding velocities of particles during charging into the moving sinter-bed. The permeability achieved by the earlier conventional ‘charging chute’ was limited due to its design and positional constraints in sinter machine. Improving the productivity of sinter machine, through increased permeability of sinter bed is successfully achieved through implementation of an innovatively designed and developed, “Magnetic Charging Chute” at Sinter Plant no. 2 of Rourkela Steel Plant. The induced magnetic force on the charged materials while the charge materials dropping down through the charge chute has improved the permeability of sinter bed through an unique method of segregating the para-magnetic materials and the finer materials of the charge materials to top layer of sinter bed along with improved size-wise segregation of charge materials. This has increased the productivity of the sinter machine by 3% and also reduced the solid fuel consumption i.e., coke breeze in input charge materials by 1kg/t of sinter.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.