Abstract

In the net-zero emissions strategy adopted to struggle global warming and environmental difficulties, the effective utilization of clean energy sources is important. In this framework, geothermal sources are an important renewable energy sources and offer many advantages. In the developed new research, a geothermal energy-supported combined configuration is considered and proposed for sustainable hydrogen, power, freshwater, hot water, and drying. In this system, an exhaustive thermodynamic examination, -energy, exergy efficiency, and exergy destruction-, as well as an economic analysis are carried out. This newly designed configuration comprises a flash-geothermal circuit, a transcritical CO2 fluid Rankine plant (tRC), a dryer, a multi-effect desalination (MED) component, and a Proton exchange membrane (PEME) and hydrogen storage units. In light of the analysis outcomes, the power generation load of the system is 1587 kW and the hydrogen quantity is calculated 0.00223 kg/s. In addition, the thermodynamic performance indicators, which are energetic and energetic performance of the tRC are determined as 10.91% and 41.68%. Moreover, the energetic efficiency of the modeled configuration is determined to be 23.18%, whereas the exergetic performance indicator is found to be 28.57%. Regarding the economic cost evaluations, the total cost of this model is calculated as 171.5 $/h.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call