Abstract

When considering a quantitative risk assessment of domino effects in chemical process facilities, the Damage Probability of equipment exposed to Fire (DPF) is a key element. In this paper, an innovative framework is proposed to determine the DPF, and the approach is demonstrated using a vertical plate. Being different from the current Probit model, structural reliability methods are applied to a pre-established lumped temperature model to obtain the DPF. Moreover, the static and dynamic DPF are distinguished, where the static one is obtained through the first-order reliability method and response surface method with an innovation in the pre-analysis of stable state to derive the limit state equation, while the dynamic one is obtained solving the Kolmogorov backward equation using the finite difference method based on stochastic diffusion process and first passage failure theories. The vertical plate demonstration shows the feasibility and availability of the proposed framework. A more practical case study with a horizontal LPG tank is also discussed to validate the suggested approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.