Abstract

In the present study, a combination of friction stir processing and electrophoretic deposition was used to fabricate nano-hydroxyapatite coatings on the Ti-CaP nanocomposite surface layer. A constant tool rotation rate of 250rpm, travel speed of 16mm/min and plunge depth of 1.2mm with a tool tilt angle of 3° were used to incorporate nano-hydroxyapatite particles into Ti–6Al–4V substrates. Microstructure of the stir zone was analyzed using optical and scanning electron microscopy. Microhardness profile and AFM analysis of substrates were then studied. The electrophoretic deposition of nano-HA particles was carried out at constant voltage of 30V after 60s. The as-deposited nano-HA coating was characterized employing scanning electron microscope and X-ray diffraction. The results of adhesion test and potentiodynamic polarization measurements showed that Ti-CaP nanocomposite layer could effectively increase the bonding strength between coating and substrate as well as corrosion resistance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.