Abstract

Although a great variety of cutting dynamometer designs are available, the research laboratories/industrial users still find them difficult to employ in real production environments; this is mainly owing to the difficulty in changing tools/cutting edges in an automated manner. To address this, a new design concept for innovative dynamometers for cutting operations (for example, turning), which can allow flexible/automated tool change without any disturbance to the industrial setups, i.e. tooling magazine, is presented in this article. The design of the dynamometers relies on an embedment of a 3-axis load cell into a tool holder on which automated tool change can be performed easily. Taking into consideration the working environment, fine-tuning of the design of the dynamometers was performed to enable the use of through-tool high coolant supply. Then, by use of uncertainty budgeting related to the assembly and calibration of the dynamometers, the measurement errors originating from the design concept have been reduced to 5%. By performing turning experiments, the proposed dynamometer concepts have been evaluated in terms of maximum loads that can be taken without losing their stability. This enabled evaluation of the drawbacks of a particular concept for which a good design solution has been proposed and tested at high values of cutting parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.